Causal Reasoning in Graphical Time Series Models

نویسندگان

  • Michael Eichler
  • Vanessa Didelez
چکیده

We propose a definition of causality for time series in terms of the effect of an intervention in one component of a multivariate time series on another component at some later point in time. Conditions for identifiability, comparable to the back–door and front–door criteria, are presented and can also be verified graphically. Computation of the causal effect is derived and illustrated for the linear case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Second Generation of Computer Interpretable Guidelines

Computer Interpretable Guidelines (CIG) are an emerging area of research, to support medical decision making through evidence-based recommendations. However, new challenges in the data management field have to be faced, to integrate CIG management with a proper treatment of patient data, and of other forms of medical knowledge (e.g., causal and behavioral knowledge). In this position paper, we ...

متن کامل

Graphical Modelling of Multivariate Time Series

We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs,...

متن کامل

Markov properties for graphical time series models

This paper deals with the Markov properties of a new class of graphical time series models which focus on the dynamic interrelationships between the components of multivariate time series. The modelling approach is based on the concept of strong Granger-causality and thus can also be applied to nonlinear models. The constraints defining the models are encoded by mixed graphs in which each compo...

متن کامل

Quantum Models of Human Causal Reasoning 1 Running head: QUANTUM MODELS OF HUMAN CAUSAL REASONING Quantum Models of Human Causal Reasoning

Throughout our lives, we are constantly faced with a variety of causal reasoning problems. A challenge for cognitive modelers is developing a comprehensive framework for modeling causal reasoning across different types of tasks and levels of causal complexity. Causal graphical models (CGMs), based on Bayes’ calculus, have perhaps been the most successful at explaining and predicting judgments o...

متن کامل

Causal Effect Identification in Acyclic Directed Mixed Graphs and Gated Models

We introduce a new family of graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. We show that these models are suitable for representing causal models with additive error terms. We provide a set of sufficient graphical criteria for the identification of arbitrary causal effects when the new models contain directed and und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007